

Accelerating independence from fossil fuels
through affordable \& accessible green energy and clean water at the source

Our Planet is living the worst climate crisis ever:

WATER SCARCITY

By 2025, two-thirds of the
world's population will face the problem of water scarcity, which will become an expensive commodity.

FOSSIL FUELS DEPENDENCY

About two-thirds of global greenhouse gas emissions are linked to burning fossil fuels for energy used for heating, electricity, transport and industry.

RENEWABLES INTERMITTENCY

Renewables could be the solutions to the other problems but they are intermittent and we need to find an efficient way to store them.

FOSSIL FUELS DEPENDENCY

AVAILABLE COMMERCIAL TECHNOLOGIES
PV PANELS

Exploits 60\%
of solar energy
OUR SOLUTION

REVERSE OSMOSIS

high energy consumption: 3-7 kWh/m ${ }^{3}$ of water purified

Saves/produces 20 times the energy need for desalination $100 \mathrm{kWh} / \mathrm{m}^{3}$

Reduces 20 times the production cost of green hydrogen down to

$$
1 \text { €/kg }
$$

SOLUTION

New Artificial Leaf

The multifunctional solar panel

- Commercial PV panels typically convert 20\% of the sunlight they receive into electricity. The remaining 80% is lost as heat.
- Our unique Water Purification System (WPS) is integrated with the solar panel. It harnesses this otherwise wasted heat to purify or desalinate water, all while the PV panel continues to generate electricity.
- If the clients wants to stores the electricity, our Electrochemical Module (ECM) steps in.
Integ rated within the system, the ECM converts the purified water into green hydrogen, operating locally and entirely off-grid.

SOLUTION - USP

INDEPENDENCE

\#3

Low Cost \&

 Low Maintenance Electrochem. Cell\# 4

NO-noble metals

 \& low maintenance (Alkaline electrolyzer)Having equal solar peak and electrochemical capacities allows the system to be off-grid, eliminating the highest OPEX cost in hydrogen production (paid electricity); at the same time, the design will give higher flexibility thanks to a dynamic work point (we are also working on an innovative cell design using low-cost materials).

\# 2

Producing H_{2} starting form wasted water will reduce the OPEX cost for its production; moreover, the possibility of selling the surplus of purified water will directly benefits H_{2} levelized cost profile.
\# 3 Using a low-cost EC reactor will bring down CAPEX costs and O\&M (OPEX) cost. Highly manufacturable and
\# 4 Using a low-cost catalyst will bring down O\&M (OPEX) cost. We have tested a zero-platinum catalyst that costs 30 times less than a normal commercial (Platinum-based) catalyst but with comparable performances.

MARKET \& CUSTOMERS

B2B

Energy Industries

- Renewables
- Water treatment
- Oil \& Gas

Hard-to-abate

- Steel
- Cement
- Petrochemicals
- Glass
- Ceramics

Infrastructures Heavy-duty
Transportation
enel

n

อกi

Arcelormittal
-Buzzi Unicem

童

SAINT-GOBAIN

snam

5 m

BUSINESS MODEL

Our business model focuses on the design, assembly and selling of the Solar-Water Purification Module (S-WPM) first and then the complete New Artificial Leaf, once the industrialization will be completed. We will operate as an Original Equipment Manufacturer and we will also offer services such as Operation
and Maintenance.

Production \& Installation

We will start with selling and installing the S-WPM.
Then, we will upgrade to the complete NAL tech

2-2.5 M€/ha / 4-4.5 M€/ha
Operation \& Maintenance
The cost of this service is estimated at an annual revenue equal to 5% of the value of the plant

200k €/yr

Annual Revenue Share

The benefit (either savings or revenues) coming from the plant will be shared with the customer

$$
30-60 k € / y r
$$

Licencing royalties

The licencing will be for markets that we cannot reach directly for geographic reasons (i.e. Australia, Asia) or for entry barriers such as the aerospace market

CUSTOMER BENEFITS

Water related cost reduction

Water related industries instead of consuming energy ($-5 \mathrm{kWh} / \mathrm{m}^{3}$), will be able to produce energy $\left(+100 \mathrm{kWh} / \mathrm{m}^{3}\right)$ while purifying water, drastically lowering cost for water disposal, technical water procurement and/or water desalination through water recycle and solar energy production.

Cost-effective SOLAR WASTE-TO-HYDROGEN

Reducing OPEX cost of water and paid electricity will enable a cost-effective production of green hydrogen directly from wastewater. Renewable energy producers will reduce curtailment, oil and gas industries and hard-to-abate sectors (i.e. steel, cement, glass) will reduce carbon footprint and improve P\&L.

LOCAL Green H_{2} production

The local production of green hydrogen will trigger a steep reduction of hydrogen transportation and compression need and it's consequent cost; this will not only benefit the P\&L of stationary industries but will also enable the creation of a sustainable network of H 2 fueling stations and the production of H 2 along infrastructures (pipelines, highways, railways, off-shore).

COMPETITORS

The competitors panorama is populated on one side by established technologies and innovators on the other; the established technologies mainly focus on centralized approaches that are characterized by low accessibility and high levelized cost; innovators are trying to focus either on accessibility or cost; nobody,
besides $\mathbf{G I}$, is providing a solution that is both low cost and accessible.

Desolenator $\quad \mathbf{H}_{2}$ PRD

sALÎNNOVA

COMPETITORS

 INDEPENDENCEGl's New Artificial Leaf is the only tech that combines and integrates into one product water solutions and green hydrogen technologies.

TRACTION

INDEPENDENCE

+3 ongoing discussions for Pilot projects

15+ Letters of Interest \& Support

snam
 T/V

| PUNCH | Hydrocells

MINISTERO DELLAMBIENTE MINISTERO DELL'AMBIENTE
E DELLA SICUREZZA ENERGETIC

Gltalgas
 R ${ }^{2}$ N

MASMECINTESA SANPAOLO INNOVATION CENTER

REGIONE PUGLIA

TEAM

ALESSANDRO MONTICELLI Founder \& CEO Supply Chain Expert | NAL's Inventor

MATTEO MORCIANO R\&D Project Leader Ass. Prof. Politecnico di Torino | Eni "Researcher of the year" 2021

MARTA PISANI
Co-Founder \& COO
B2B Marketing \& Sales Expert

FEDERICO CRESPI Project Coordinator Economics \& Sustainability

ANDREA MINGOLLA
BD Advisor
Manager EY | Startup Advisor
accenture EY

ADVISORY
BOARD

MASSIMO SANTARELLI Full Professor

LUCA BIAGINI Former CEO China

FABRIZIA FAGGIANO Attorney㴧FEDRERIGONI WHITE \&CASE

VITO ALFARANO GM Global Supply Chain (80)

FPT

ROADMAP

Electrochemical Module (ECM) is at TRL 5 with a patent (PCT). Solar-Water Purification Module (S-WPM) is at TRL 6 with a patent filed. The market entry roadmap foresees the completion of the S-WPM by 2026, while the complete NAL by 2027.

VALUE CHAIN

To accelerate market entry, Green Independence will, in the first phase, outsource the production of the main subcomponents to focus only on design, assembly, testing and installation at the customer. In this regard, we are already in contact with some of the most important suppliers for us and we are working on the agreements regarding possible co-development and production.

FUNDING NEED

PREVIOUS: €1.1M
 cdp" PLUGANOPLAY sc̄ıēntifica \div FONDO H
 Paid POCs €90k Grants €150k
 VC Investments €900k

USE OF FUNDS

50\% Product \& R\&D
30\% Operations
10\% CapEx
7\% Sales \& Marketing
3\% Other

Gl has already secured a total $€ 1.1 \mathrm{M}$ in funding, €0.9M from Investors and the rest from paid PoCs and grants. GI has already invested 45\% of the acquired funds and the remaining 35% will sustain operations for the next 6 to 8 months, completing the product development of the Solar-Water Purification Module.
To complete the entire NAL development, operations, and CAPEX, GI is seeking an additional €2M in funding to cover a total runway of $\mathbf{2 4}$ months.

WE LOOK FOR PARTNERS

100 sqm Pilot Project

GI is looking for partners that can co-develop / supply NAL subcomponents; we are also looking for partners that can support us for pilot projects that will validate NAL technology in the industrial field.

FINANCIAL PROJECTIONS

Within $\mathbf{5}$ years we expect to reach a market share of 0.8% of the SAM (equivalent to $\boldsymbol{€} \mathbf{1 0 4 M} \mathbf{(\$ 1 1 0 M)}$ cumulated revenues) resulting from $\mathbf{3 0}$ hectares of installations. We expect to hit breakeven point between 4th-5th year.

We are building the NEW ARTIFICIAL LEAF because we believe that
 we only need
 sun and water to empower a greener future!

